
Scaling out with
Akka Actors

J. Suereth

Agenda

● The problem
● Recap on what we have
● Setting up a Cluster
●
● Advanced Techniques

Who am I?

● Author Scala In Depth, sbt in Action
● Typesafe Employee
● Big Nerd

ScalaDays
JUNE 10TH-12TH 2013, NYC

The new web

● EVENT DRIVEN
● ASYNCHRONOUS
● DATA-DRIVEN
● BIG DATA
● SINGLE PAGE DESIGN
● COMPOSITION OF SERVICES
● DISTRIBUTED
● REACTIVE

The new web

● EVENT DRIVEN
● ASYNCHRONOUS
● DATA-DRIVEN
● BIG DATA
● SINGLE PAGE DESIGN
● COMPOSITION OF SERVICES
● DISTRIBUTED
● REACTIVE

The problem
I can't scale my website

The Hotel Search Business

Architecture
W

eb
 L

ay
er

S
er

vi
ce

 L
ay

er

D
at

a
La

ye
r

DBMS

Architecture

W
eb

 L
ay

er

S
er

vi
ce

 L
ay

er

D
at

a
La

ye
r DBMS

W
eb

 L
ay

er

S
er

vi
ce

 L
ay

er

D
at

a
La

ye
r

Architecture

DBMS

Architecture

DBMS

So...
we built a Search system that
● Finds hotels
● Dynamically grows the search index
● Caches previous query results for some time
● Detects system overload and returns a cute

animal drawing

Our Current Architecture
W

eb
 L

ay
er

S
er

vi
ce

 L
ay

er

D
at

a
La

ye
r

DBMS

Search Index

Let's dig into
the Search Index

Front-End

Backend

Current Actor Layout

Cache
Throttle

Se
rv

ic
e

La
ye

r

Scatter Gather Search Index

● Split documents into Topics
○ Create a "leaf" actor for each topic.
○ Topic actors have local index

● Categories
○ Group topics into categories
○ Group categories into more categories
○ one root
○ delegate queries to topics
○ aggregate results

● Dynamically Expands
○ Topics can decide to split into categories and sub-

topics

Front End

● Query Cache
○ Caches top N query results
○ (Not in sample code) Evicts stale cache
○ Primary source of speedup!

● Throttler
○ Records average query-response-time
○ When in "failure" mode, prevents queries from

hitting the system and returns 'failure' response.

Let's remember....

Scatter Phase

Topic 1 Topic 2 Topic 3 Topic 4

Category 1 Category 2

Root

Query

Gather Phase

Topic 1 Topic 2 Topic 3 Topic 4

Category 1 Category 2

Root

Results

Actual Actors

Topic 1 Topic 2 Topic 3 Topic 4

Category 1 Category 2

Root

gatherer

gatherer

gatherer

Creates

Throttling

Throttler

Statistics
Service

Query

Interceptor

Throttling

Throttler

Statistics
Service

Query

Interceptor

Query

Response

Statistics

Throttling

Throttler

Statistics
Service

Interceptor
Response

Response

Creates

Throttling - Timeouts

Throttler

Statistics
Service

Query

Interceptor

Throttling - Timeouts

Throttler

Statistics
Service

Query

Interceptor

Query

Timeout

Statistics

Throttling - Timeouts

Throttler

Statistics
Service

Interceptor

Response

FAIL

Statistics

Throttling - Timeouts

Throttler

Statistics
Service

Interceptor

Response

Throttler

Throttling - Dropping
Queries

Throttler

Statistics
Service

Throttler

Query

Response

Throttling - Recovery

Throttler

Statistics
Service

Throttler

Timeout

Allow

What now?

We installed our Search Tree on a huge-
mongous server, and it's sucking up all 128GB
RAM, and all 24 cores!

.... It's time to scale out

Remember we tried...

DBMS

W
eb

 L
ay

er

S
er

vi
ce

 L
ay

er

D
at

a
La

ye
r

Search Index

W
eb

 L
ay

er

S
er

vi
ce

 L
ay

er

D
at

a
La

ye
r

Now we want

DBMS

Cluster Node

Spring Application Akka Search
Index Node

R
ia

k

Cluster Node

Spring Application Akka Search
Index Node

R
ia

k

Cluster Node

Spring Application Akka Search
Index Node

R
ia

k

Cluster Node

Spring Application Akka Search
Index Node

R
ia

k

Cluster Node

Spring Application Akka Search
Index Node

R
ia

k

Cluster Node

Spring Application Akka Search
Index Node

R
ia

k

Using Akka Clustering

● Akka now supports automatic cluster
membership and notification
○ Considered experimental in 2.1
○ We're using 2.2-M2 for this talks

● Let's identify portions of our application and
how we can scale them out

Setting up an Akka Cluster

Your Build
libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % "2.2-M2",
 "com.typesafe.akka" %% "akka-cluster-experimental" %
"2.2-M2")

<dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-actor-${scala.version}</artifactId>

 <version>2.2-M2</version>

</dependency>

<dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-cluster-experimental-${scala.version}</artifactId>

 <version>2.2-M2</version>

</dependency>

Application Configuration
akka {

 actor {

 provider = "akka.cluster.ClusterActorRefProvider"

 }

 remote {

 log-remote-lifecycle-events = off

 netty.tcp {

 hostname = "127.0.0.1"

 port = 0

 }

 }

 cluster {

 seed-nodes = [

 "akka.tcp://ClusterSystem@127.0.0.1:2551" ,

 "akka.tcp://ClusterSystem@127.0.0.1:2552"]

 auto-down = on

 }

}

Actor references become cluster-ified

Nodes we look for to join the cluster

Code

 val system =
 ActorSystem("ClusterSystem")

Front-End

Backend

Remember the Actor Layout

Cache
Throttle

Step #1
Let's automatically generate throttle and cache on

every cluster node.

Creation code unchanged

system.actorOf(Props[FrontEnd]),
 "search-front-end")

This runs on every cluster node where
we want a frontend

Registration on the FrontEnd
case class RegisterSearchTree(tree: ActorRef)

class FrontEnd extends Actor with ...{
 ...
 def receive: Receive = {
 case RegisterSearchTree(tree) =>
 // Now we create the cache + throttler
 }
} The backend will now tell the

frontend where it is, as each
frontend cluster member registers.

Create Cluster-Aware
Backend
class TreeTop .. extends Actor {

 val searchTree: ActorRef = createSearchTree()

 val cluster = Cluster(context.system)

 override def preStart(): Unit =
 cluster.subscribe(self, classOf[MemberUp])

 override def postStop(): Unit =
 cluster.unsubscribe(self)

 ...
}

A new "top" on the
scatter-gather tree
registers for cluster
membership events

Create Cluster-Aware
Backend
 def receive: Receive = {

 case q: SearchQuery => searchTree.tell(q, sender)

 case h: AddHotel => searchTree.tell(h, sender)

 case MemberUp(member) =>
 val memberFrontEnd =
 context.actorFor(
 RootActorPath(member.address) /
 "user" / "search-front-end")
 memberFrontEnd ! RegisterTree(self)
 }

Notify the local "search-
front-end" when a member
joins the cluster

What we have now

cluster member #1

top

cluster member #2

front-end

MemberUp

MemberUp

RegisterTree

Cache Throttle

Just one node?

MemberUp message is still fired, so front end
still finds the back end.

Recap #1

Can use Cluster membership notifications to
register important services with each other.

Step #2
Ensure the Search Tree can survive node failure

Cluster Singleton Pattern

● Construct a Manager on every cluster node
● Managers communicate and elect a "leader"
● On leader failure, a new leader is chosen
● Create local proxy actor who keeps track of

where the leader is.
● Issues

○ Bottleneck
○ Delay in failure recovery (single point of failure)

See: http://doc.akka.io/docs/akka/snapshot/contrib/cluster-singleton.html

http://doc.akka.io/docs/akka/snapshot/contrib/cluster-singleton.html

Creating the Singleton
import akka.contrib.pattern.ClusterSingletonManager

system.actorOf(Props(
 new ClusterSingletonManager(
 singletonProps = _ => Props(new NodeManager("top",
db)),
 singletonName = "search-tree",
 terminationMessage = PoisonPill,
 role = None)),
 name = "singleton")

Creating the Singleton
import akka.contrib.pattern.ClusterSingletonManager

system.actorOf(Props(
 new ClusterSingletonManager(
 singletonProps = _ => Props(new NodeManager("top",
db)),
 singletonName = "search-tree",
 terminationMessage = PoisonPill,
 role = None)),
 name = "singleton")

Creating the Singleton
import akka.contrib.pattern.ClusterSingletonManager

system.actorOf(Props(
 new ClusterSingletonManager(
 singletonProps = _ => Props(new NodeManager("top",
db)),
 singletonName = "search-tree",
 terminationMessage = PoisonPill,
 role = None)),
 name = "singleton")

Creating the Proxy
class TreeTopProxy extends Actor {
 val cluster = Cluster(context.system)

 override def preStart(): Unit =
 cluster.subscribe(self, classOf[LeaderChanged])

 override def postStop(): Unit =
 cluster.unsubscribe(self)

 var leaderAddress: Option[Address] = None
 ...

Creating the Proxy (part 2)
 ...
 def receive = {
 case state: CurrentClusterState =>
 leaderAddress = state.leader
 case LeaderChanged(leader) =>
 leaderAddress = leader
 case msg => singleton foreach { _ forward msg }
 }
 def singleton: Option[ActorRef] =
 leaderAddress map (a =>
 context.actorFor(RootActorPath(a) /
 "user" / "singleton" / "search-tree"))
}

Visualizing

cluster member #1 cluster member #2

Proxy ProxyManager Manager

LeaderChanged

lookup

lookup

Visualizing

cluster member #1 cluster member #2

Proxy ProxyManager Manager

LeaderChanged

lookup
lookup

Stop

Step #3
Fragment the Search Tree

We still have scaling issues

cluster member #1 (LEADER)

Cache /
Throttle TreeProxy

cluster member #2

Cache /
Throttle TreeProxy

cluster member #3

Cache /
Throttle TreeProxy

What are routers?

● Layer between ActorRef / Actors
● Route messages to underlying actors
● Non-Cluster Examples:

○ Round Robin
○ Scatter Gather (first-found)
○ Consistent Hashing
○ Random
○ Broadcast

Tree with local routers

Category

router router router

Topic-1
(i-1)

Topic-1
(i-2)

Topic-2
(i-1)

Topic-2
(i-2)

Topic-3
(i-1)

Topic-3
(i-2)

Clustered Router

Like local routers, but actor instances may be
on other nodes.

Clustered Router
props.withRouter(
 ClusterRouterConfig(
 BroadcastRouter(1),
 ClusterRouterSettings(
 totalInstances = 3,
 maxInstancesPerNode = 1,
 allowLocalRoutees = true,
 useRole = None
)
)
)

Local Router

Cluster Router

Tree with remote routers

Category

router router router

Topic-1
(i-1) Topic-1

(i-2)

Topic-2
(i-1)

Topic-2
(i-2)

Topic-3
(i-1)

Topic-3
(i-2)

Metrics based Routing

● Requires "sigar" dependency to enable
● Examples:

○ AdaptiveLoadBalancingRouter
■ heap
■ cpu
■ load
■ mix

Recap
Clustered system design with Actors

Actor Systems

● Partition state into small pieces
● Communicate with immutable messages
● Spawn new actors to track temporary state
● Design as a Topology
● Partition threads on the topology
● Bubble errors on the topology

Clustered Actor Systems

● Partition Topology on nodes in the cluster
○ Limit instances with routers
○ Register with other clusters using cluster listeners
○ Use roles to fragment actors across the cluster
○ Keep "singleton" actors on the leader or role leader

● Avoid excessive inter-node messaging
○ Use statistics based routing
○ Fragment in 'large pieces'

● Allow time for cluster convergence and fault
detection

Key Point
Ensure your system can recover from failure

Resources

● http://github.com/jsuereth/intro-to-actors
Example code (clusters branch)

● http://akka.io
Akka concurrency framework for the JVM

http://github.com/jsuereth/intro-to-actors
http://github.com/jsuereth/intro-to-actors
http://akka.io
http://akka.io

Questions?

